Discovery of Rare Sequential Topic Patterns in Document Stream
نویسندگان
چکیده
When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events Ning Yang*, Sichuan University; Xiangnan Kong, University of Illinois at Chicago; Fengjiao Wang, University of Illinois at Chicago; Philip Yu, University of Active Multitask Learning Using Both Latent and Supervised Shared Topics Ayan Acharya*, University of Texas at Austin; Raymond Mooney, University of Texas at Austin; VoG: Summarizing and Understanding Large Graphs Danai Koutra*, Carnegie Mellon University; U Kang, KAIST; Jilles Vreeken, Max-Planck Institut fu ̈r
منابع مشابه
Does Fundraising Have Meaningful Sequential Patterns? The Case of Fintech Startups
Nowadays, fundraising is one of the most important issues for both Fintech investors and startups. The pattern of fundraising in terms of “number and type of rounds and stages needed” are important. The diverse features and factors that could stem from Fintech business models which can influence success are of the key issues in shaping these patterns. This study applied the top 100 KPMG Fintech...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملEfficient Mining of High Utility Sequential Patterns Over Data Streams
High utility sequential pattern mining has emerged as an important topic in data mining. Although several preliminary works have been conducted on this topic, the existing studies mainly focus on mining high utility sequential patterns (HUSPs) in static databases and do not consider the streaming data. Mining HUSPs over data streams is very desirable for many applications. However, addressing t...
متن کاملA Single-scan Algorithm for Mining Sequential Patterns from Data Streams
Sequential pattern mining (SPAM) is one of the most interesting research issues of data mining. In this paper, a new research problem of mining data streams for sequential patterns is defined. A data stream is an unbound sequence of data elements arriving at a rapid rate. Based on the characteristics of data streams, the problem complexity of mining data streams for sequential patterns is more ...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014